Principal Component analysis (PCA – Theory)
PCA with Case-Study
Linear Discriminant Analysis(LDA) for Dimension Reduction
Feature Selection to Select the Most Relevant Predictors
Confusion matrix
Accuracy Paradox
CAP Curve
K-Mean Clustering Intuition
K-Mean selecting Numbers of Cluster
NLP Intuition
Types of NLP
Classification vs Deep Learning Models
The Neuron
Activation function
How Neural network work & learn by itself
Gradient Descent
Stochastic Gradient Descent
Ethics of Deep Learning
What are convolutional neural networks [CNN] ?
CNN Architecture
CNN Code preparation
Recurrent Neural Networks
Several layers
■ ReLLu Operation
■ Pooling
■ Flattering
■ Full Connection
Statistics
Sample Selection
Probability Theory
Hypothesis
Model Relationship
Model Fit
Descriptive Statistics
Types of Data
Qualitative Data
Histograms
Different Plots
Centrality and Spread
Outliers
Median, Mean, Mode
What is computer vision & its application
Face Detection
■ Adding more features & Categorization
■ Object Detection & Image creation
■ Working with Images & vectors
Facial Expression Recognition in Code (Binary / Sigmoid /Logistic Regression)
What are Vectors
Working with word Analogy
Text Classification
Pre Trained word vectors from word2vec
Language Models
Introduction to Tensorflow / Keras
Most used right now
Resources gathering
Keras dealing with Missing Data
Dealing with Categorical data
WhatsApp us